Numerical boundary control for semilinear hyperbolic systems
نویسندگان
چکیده
This work is devoted to the design of boundary controls physical systems that are described by semilinear hyperbolic balance laws. A computational framework presented yields sufficient conditions for a control steer system towards desired state. The approach based on Lyapunov stability analysis and CWENO-type reconstruction.
منابع مشابه
Ergodic Boundary/point Control of Stochastic Semilinear Systems
A controlled Markov process in a Hilbert space and an ergodic cost functional are given for a control problem that is solved where the process is a solution of a parameter-dependent semilinear stochastic differential equation and the control can occur only on the boundary or at discrete points in the domain. The linear term of the semilinear differential equation is the infinitesimal generator ...
متن کاملError Estimates for the Numerical Approximation of Dirichlet Boundary Control for Semilinear Elliptic Equations
We study the numerical approximation of boundary optimal control problems governed by semilinear elliptic partial differential equations with pointwise constraints on the control. The control is the trace of the state on the boundary of the domain, which is assumed to be a convex, polygonal, open set in R. Piecewise linear finite elements are used to approximate the control as well as the state...
متن کاملError Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems. Continuous Piecewise Linear Approximations
We discuss error estimates for the numerical analysis of Neumann boundary control problems. We present some known results about piecewise constant approximations of the control and introduce some new results about continuous piecewise linear approximations. We obtain the rates of convergence in i ^ ( r ) . Error estimates in the uniform norm are also obtained. We also discuss the semidiscretiza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Control and Related Fields
سال: 2023
ISSN: ['2156-8499', '2156-8472']
DOI: https://doi.org/10.3934/mcrf.2022040